Yolk Sac Mesenchymal Progenitor Cells from New World Mice (Necromys lasiurus) with Multipotent Differential Potential

نویسندگان

  • Phelipe Oliveira Favaron
  • Andrea Mess
  • Sônia Elisabete Will
  • Paulo César Maiorka
  • Moacir Franco de Oliveira
  • Maria Angelica Miglino
چکیده

Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13%) and large, round epithelial-like cells with centrally located nuclei (6.5%). Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73) and pluripotency (Oct3/4, Nanog) as well as precursors of hematopoietic stem cells (CD117). In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of human amnion-derived multipotent progenitor cells on hematopoietic recovery after total body irradiation in C57BL/6 mice

Background: The hematopoietic system is sensitive to the adverse effects of ionizing radiation. Cellular therapies utilizing mesenchymal stem cells or vascular endothelial cells have been explored as potential countermeasures for radiation hematopoietic injuries. We investigated cells cultured from amnion                ...

متن کامل

The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm.

We have traced emerging hematopoietic cells along human early ontogeny by culturing embryonic tissue rudiments in the presence of stromal cells that promote myeloid and B cell differentiation, and by assaying T cell potential in the NOD-SCID mouse thymus. Hematogenous potential was present inside the embryo as early as day 19 of development in the absence of detectable CD34+ hematopoietic cells...

متن کامل

A review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell

Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...

متن کامل

Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos.

Mesenchymal stem cells (MSCs) are multipotent stem cells that can generate various microenvironment components in bone marrow, ensuring a precise control over self-renewal and multilineage differentiation of hematopoietic stem cells. Nevertheless, their spatiotemporal correlation with embryonic hematopoiesis remains rudimentary, particularly in relation to the human being. Here, we reported tha...

متن کامل

Engraftment of embryonic hematopoietic cells in conditioned newborn recipients.

Yolk sac hematopoiesis is characterized by restricted hematopoietic cell differentiation. Although multipotent hematopoietic progenitor cells have been identified in the early yolk sac, long-term multilineage repopulating (LTMR) hematopoietic stem cell (HSC) activity has not been demonstrable before day 11 postcoitus (PC) using standard transplantation assays. In the present study, day-10 PC yo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014